Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems - Beta working paper 161, accepted for publication in European Journal of Operation Research - 2006

نویسندگان

  • Martijn Mes
  • Matthieu van der Heijden
  • Aart van Harten
چکیده

We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during schedule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a Vickrey auction for each incoming order. This approach offers several advantages: it is fast, requires relatively little information and facilitates easy schedule adjustments in reaction to information updates. We compare the agent-based approach to more traditional hierarchical heuristics in an extensive simulation experiment. We find that a properly designed multiagent approach performs as good as or even better than traditional methods. Particularly, the multi-agent approach yields less empty miles and a more stable service level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of agent-based scheduling to look-ahead heuristics for real-time transportation problems

We consider the real-time scheduling of full truckload transportation orders with time windows that arrive during schedule execution. Because a fast scheduling method is required, look-ahead heuristics are traditionally used to solve these kinds of problems. As an alternative, we introduce an agent-based approach where intelligent vehicle agents schedule their own routes. They interact with job...

متن کامل

Agent-Based Modeling of Day-Ahead Real Time Pricing in a Pool-Based Electricity Market

In this paper, an agent-based structure of the electricity retail market is presented based on which day-ahead (DA) energy procurement for customers is modeled. Here, we focus on operation of only one Retail Energy Provider (REP) agent who purchases energy from DA pool-based wholesale market and offers DA real time tariffs to a group of its customers. As a model of customer response to the offe...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

Agent-based transportation planning compared with scheduling heuristics

Here we consider the problem of dynamically assigning vehicles to transportation orders that have di¤erent time windows and should be handled in real time. We introduce a new agent-based system for the planning and scheduling of these transportation networks. Intelligent vehicle agents schedule their own routes. They interact with job agents, who strive for minimum transportation costs, using a...

متن کامل

An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method

In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005